Selected Publications
Conferences
Transport meets Variational Inference: Controlled Monte Carlo Diffusions
Francisco Vargas*, Shreyas Padhy*, Denis Blessing, Nikolas Nüsken.
ICLR 2024
[paper] [code]
Stochastic Gradient Descent for Gaussian Processes Done Right
Shreyas Padhy*, Jihao Andreas Lin*, Javier Antorán*, Austin Tripp,
Alexander Terenin, Csaba Szepesvári, José Miguel Hernández-Lobato, David Janz
ICLR 2024
[paper] [code]
Sampling from Gaussian Process Posteriors using Stochastic Gradient Descent
Shreyas Padhy*, Jihao Andreas Lin*, Javier Antorán*, David Janz, José
Miguel Hernández-Lobato, Alexander Terenin.
NeurIPS 2023 (Oral)
[code] [paper]
Sampling-based inference for large linear models, with application to linearised
Laplace
Shreyas Padhy*, Javier Antorán*, Riccardo Barbano, Eric Nalisnick,
David Janz, José Miguel Hernández-Lobato
ICLR 2023
[code] [paper] [slides] [poster]
Simple and principled uncertainty estimation with deterministic deep learning via
distance awareness
Jeremiah Zhe Liu, Zi Lin, Shreyas Padhy, Dustin Tran, Tania
Bedrax-Weiss, and Balaji Lakshminarayanan.
NeurIPS 2020
[code]
[paper]
Preprints
DEFT: Efficient Finetuning of Conditional Diffusion Models by Learning the
Generalised h-transform
Shreyas Padhy*, Alexander Denker*, Francisco Vargas*, Kieran Didi*,
Simon Mathis*, Vincent Dutordoir, Riccardo Barbano, Emile Mathieu, Urszula Julia
Komorowska, Pietro Lio
[paper]
Improving Linear System Solvers for Hyperparameter Optimisation in Iterative Gaussian
Processes
Jihao Andreas Lin, Shreyas Padhy, Bruno Mlodozeniec, Javier Antorán,
José Miguel Hernández-Lobato
[paper]
Kernel Regression with Infinite-Width Neural Networks on Millions of Examples
Ben Adlam, Jaehoon Lee, Shreyas Padhy, Zachary Nado, Jasper Snoek.
[paper]
Journals
A Simple Approach to Improve Single-Model Deep Uncertainty via
Distance-Awareness
Jeremiah Zhe Liu*, Shreyas Padhy*, Jie Ren*, Zi Lin, Yeming Wen,
Ghassen Jerfel, Zack Nado, Jasper Snoek, Dustin Tran, Balaji Lakshminarayanan
JMLR 2023
[code]
[paper] [poster]
Workshops
Revisiting One-vs-All Classifiers for Predictive Uncertainty and Out-of-Distribution
Detection in Neural
Networks
Shreyas Padhy, Zachary Nado, Jie Ren, Jeremiah Liu, Jasper Snoek, and
Balaji Lakshminarayanan.
ICML 2020 Workshop on Uncertainty and Robustness in Deep Learning.
[code]
[paper]
A Simple Fix to Mahalanobis Distance for Improving Near-OOD Detection
Jie Ren, Stanislav Fort, Jeremiah Liu, Abhijit Guha Roy, Shreyas Padhy,
and Balaji Lakshminarayanan
ICML 2021 Workshop on Uncertainty and Robustness in Deep Learning.
[paper]
Evaluating prediction-time batch normalization for robustness under covariate
shift
Zachary Nado, Shreyas Padhy, D. Sculley, Alexander D'Amour, Balaji
Lakshminarayanan, and Jasper Snoek.
ICML 2020 Workshop on Uncertainty and Robustness in Deep Learning.
[code]
[paper]
Uncertainty Baselines: Benchmarks for Uncertainty & Robustness in Deep
Learning
Zachary Nado at al.
Bayesian Deep Learning Workshop, 2021.
[code] [paper]
|