Selected Publications 
                            Conferences
                             Transport meets Variational Inference: Controlled Monte Carlo Diffusions 
                                Francisco Vargas*, Shreyas Padhy*, Denis Blessing, Nikolas Nüsken. 
                                 ICLR 2024 
                                [paper] [code]
                             
                             Stochastic Gradient Descent for Gaussian Processes Done Right 
                                Shreyas Padhy*, Jihao Andreas Lin*, Javier Antorán*, Austin Tripp,
                                Alexander Terenin, Csaba Szepesvári, José Miguel Hernández-Lobato, David Janz 
                                 ICLR 2024 
                                [paper] [code]
                             
                             Sampling from Gaussian Process Posteriors using Stochastic Gradient Descent 
                                Shreyas Padhy*, Jihao Andreas Lin*, Javier Antorán*, David Janz, José
                                Miguel Hernández-Lobato, Alexander Terenin.  
                                 NeurIPS 2023 (Oral)
                                [code] [paper]
                             
                             Sampling-based inference for large linear models, with application to linearised
                                    Laplace 
                                Shreyas Padhy*, Javier Antorán*, Riccardo Barbano, Eric Nalisnick,
                                David Janz, José Miguel Hernández-Lobato  
                                 ICLR 2023
                                [code] [paper] [slides] [poster]
                             
                             Simple and principled uncertainty estimation with deterministic deep learning via
                                    distance awareness 
                                Jeremiah Zhe Liu, Zi Lin, Shreyas Padhy, Dustin Tran, Tania
                                Bedrax-Weiss, and Balaji Lakshminarayanan.  
                                 NeurIPS 2020 
                                [code]
                                [paper]
                             
                            Preprints
                             DEFT: Efficient Finetuning of Conditional Diffusion Models by Learning the
                                    Generalised h-transform 
                                Shreyas Padhy*, Alexander Denker*, Francisco Vargas*, Kieran Didi*,
                                Simon Mathis*, Vincent Dutordoir, Riccardo Barbano, Emile Mathieu, Urszula Julia
                                Komorowska, Pietro Lio 
                                [paper]
                             
                             Improving Linear System Solvers for Hyperparameter Optimisation in Iterative Gaussian
                                    Processes 
                                Jihao Andreas Lin, Shreyas Padhy, Bruno Mlodozeniec, Javier Antorán,
                                José Miguel Hernández-Lobato 
                                [paper]  
                             Kernel Regression with Infinite-Width Neural Networks on Millions of Examples 
                                Ben Adlam, Jaehoon Lee, Shreyas Padhy, Zachary Nado, Jasper Snoek. 
                                [paper]  
                            Journals
                             A Simple Approach to Improve Single-Model Deep Uncertainty via
                                    Distance-Awareness 
                                Jeremiah Zhe Liu*, Shreyas Padhy*, Jie Ren*, Zi Lin, Yeming Wen,
                                Ghassen Jerfel, Zack Nado, Jasper Snoek, Dustin Tran, Balaji Lakshminarayanan  
                                 JMLR 2023 
                                [code]
                                [paper] [poster]
                             
                            
                            Workshops
                             Revisiting One-vs-All Classifiers for Predictive Uncertainty and Out-of-Distribution
                                    Detection in Neural
                                    Networks 
                                Shreyas Padhy, Zachary Nado, Jie Ren, Jeremiah Liu, Jasper Snoek, and
                                Balaji Lakshminarayanan. 
                                 ICML 2020 Workshop on Uncertainty and Robustness in Deep Learning. 
                                [code]
                                [paper]
                             
                             A Simple Fix to Mahalanobis Distance for Improving Near-OOD Detection 
                                Jie Ren, Stanislav Fort, Jeremiah Liu, Abhijit Guha Roy, Shreyas Padhy,
                                and Balaji Lakshminarayanan 
                                 ICML 2021 Workshop on Uncertainty and Robustness in Deep Learning. 
                                [paper]
                             
                              Evaluating prediction-time batch normalization for robustness under covariate
                                    shift 
                                Zachary Nado, Shreyas Padhy, D. Sculley, Alexander D'Amour, Balaji
                                Lakshminarayanan, and Jasper Snoek. 
                                 ICML 2020 Workshop on Uncertainty and Robustness in Deep Learning. 
                                [code]
                                [paper]
                             
                             Uncertainty Baselines: Benchmarks for Uncertainty & Robustness in Deep
                                    Learning 
                                Zachary Nado at al. 
                                 Bayesian Deep Learning Workshop, 2021. 
                                [code] [paper]
                             
                            
                         |