SHREYAS PADHY

PhD Candidate | Machine Learning Group | University of Cambridge (sp2058@cam.ac.uk) | (shreyaspadhy.github.io)

EDUCATION

University of Cambridge

PhD in Engineering Supervised by Dr. Jośe Miguel Hernández-Lobato

Johns Hopkins University MSE in Biomedical Engineering Overall GPA: 4.0/4.0

Indian Institute of Technology Delhi

B.Tech in Engineering Physics Overall GPA: 8.871/10 (Department Rank 4)

EMPLOYMENT

Research Intern, Microsoft Research, Cambridge, UK Under mentorship of James Hensman and John Winn

- $\cdot \ \ \ Developed \ time-series \ Gaussian \ Process \ models \ for \ sparse, \ discrete \ count \ data \ using \ negative \ binomial \ likelihoods.$
- · Developed temporal models of source information for large-scale, distributed knowledge graph databases using INFER.net and Bayesian linear models.

AI Resident, Google Brain, Cambridge, MA Under mentorship of Balaji Lakshminarayanan and Jasper Snoek, Google Brain

- Published research in NeurIPS 2020 and JMLR 2023 on Spectral-normalized Neural Gaussian Process (SNGP),
- a competitive single-model approach on prediction, calibration and out-of-domain detection that encodes input distance awareness.
- $\cdot\,$ Core contributor for the Uncertainty Baselines, Uncertainty Metrics and Robustness Metrics open-source libraries in Python, Jax, and Tensorflow.
- Published multiple topics of research in *ICML Workshops* on one-vs-all losses, Mahalanobis distance for OOD detection, and batch normalisation for improved predictive uncertainty.

PUBLICATIONS

CONFERENCES

- Sampling from Gaussian Process Posteriors using Stochastic Gradient Descent
 <u>Shreyas Padhy</u>*, Jihao Andreas Lin*, Javier Antoran*, David Janz, José Miguel Hernández-Lobato, Alexander Terenin. (NeurIPS 2023 (Oral)) arXiv.
- Sampling-based inference for large linear models, with application to linearised Laplace.
 Shreyas Padhy*, Javier Antoran*, Riccardo Barbano, Eric Nalisnick, David Janz, and José Miguel Hernández-Lobato. (ICLR 2023). arXiv .
- Simple & principled uncertainty estimation with deterministic deep learning via distance awareness. Jeremiah Zhe Liu, Zi Lin, Shreyas Padhy, Dustin Tran, Tania Bedrax-Weiss, and Balaji Lakshminarayanan. (NeurIPS 2020)

PREPRINTS

· Stochastic Gradient Descent for Gaussian Processes Done Right.

Shreyas Padhy^{*}, Jihao Andreas Lin^{*}, Javier Antoran^{*}, Austin Tripp, Alexander Terenin, Csaba Szepesvari, José Miguel Hernández-Lobato, David Janz. arXiv.

- Transport Meets Variational Inference: Controlled Monte Carlo Diffusions. Francisco Vargas^{*}, Shreyas Padhy^{*}, Denis Blessing, Nikolas Nüsken. arXiv.
- Kernel Regression with Infinite-Width Neural Networks on Millions of Examples. Ben Adlam, Jaehoon Lee, Shreyas Padhy, Zachary Nado, Jasper Snoek. arXiv.

August 2017 - May 2019

October 2021 - September 2025 (expected)

July 2013 - May 2017

August 2019 - August 2021

May 2023 - August 2023

JOURNALS

- A Simple Approach to Improve Single-Model Deep Uncertainty via Distance-Awareness.
 Jeremiah Liu^{*}, <u>Shreyas Padhy</u>^{*}, Jie Ren^{*}, Zi Lin, Yeming Wen, Ghassen Jerfel, Zack Nado, Jasper Snoek, Dustin Tran, and Balaji Lakshminarayanan. (JMLR 2023).arXiv
- Using Deep Siamese Neural Networks for Detection of Brain Asymmetries Associated with Alzheimer's Disease and Mild Cognitive Impairment
 Chin-fu Liu*, Shreyas Padhy* et. al. Magnetic resonance imaging 64 (2019): 190-199., 2019.
- Stochastic Solutions to Rough Surface Scattering using the finite element method Uday K. Khankhoje and Shreyas Padhy, *IEEE Transactions on Antennas and Propagation*

WORKSHOPS

- Learning Generative Models with Invariance to Symmetries.
 James Allingham, Javier Antoran, <u>Shreyas Padhy</u>, Eric Nalisnick, and José Miguel Hernández-Lobato. NeurReps Workshop at NeurIPS 2022.
- A Simple Fix to Mahalanobis Distance for Improving Near-OOD Detection.
 Jie Ren, Stanislav Fort, Jeremiah Liu, Abhijit Guha Roy, Shreyas Padhy, and Balaji Lakshminarayanan. ICML 2021 Workshop on Uncertainty and Robustness in Deep Learning.
- Evaluating prediction-time batch normalization for robustness under covariate shift.
 Zachary Nado, <u>Shreyas Padhy</u>, D. Sculley, Alexander D'Amour, Balaji Lakshminarayanan, and Jasper Snoek.
 ICML 2020 Workshop on Uncertainty and Robustness in Deep Learning.
- Revisiting One-vs-All Classifiers for Predictive Uncertainty and OOD Detection in Neural Networks. <u>Shreyas Padhy</u>, Zachary Nado, Jie Ren, Jeremiah Liu, Jasper Snoek, and Balaji Lakshminarayanan. <u>ICML 2020</u> Workshop on Uncertainty and Robustness in Deep Learning.
- · Uncertainty Baselines: Benchmarks for Uncertainty & Robustness in Deep Learning. Zachary Nado et. al., Bayesian Deep Learning Workshop, 2021. arXiv &

AWARDS AND ACHIEVEMENTS

Qualcomm Innovation Fellowship 2023: Among 11 finalists invited for the online finals.
Qualcomm Innovation Fellowship 2022: Among 12 finalists invited to Amsterdam.
Trinity-Henry Barlow Scholarship 2021: Awarded by Trinity College, University of Cambridge.
Harding Distinguished Postgraduate Scholars Programme (HDPSP) 2021: Awarded full overseas funding for the duration of the PhD Program at the University of Cambridge.

Summer Undergraduate Research Award 2015: For undergraduate research in microwave imaging. Top 7% GPA Merit Scholarship: In 2013, 2014, 2015, and 2016 Fall Semesters for exceptional performance at the Indian Institute of Technology Delhi.

PROFESSIONAL ENGAGEMENTS

Invited Talk on Stochastic Gradient Descent for GPs at Microsoft Research Cambridge, *October 2023.* SDEs and Schrodinger Bridges, presented at the Cambridge MLG Reading Group, *July 2023.* Invited Talk on Sampling-Based Inference, at NeurIPS @ Cambridge, *December 2022.* Out-of-Distribution Generalisation, presented at the Cambridge MLG Reading Group, *October 2022.* Optimal Transport Metrics, presented at the Cambridge MLG Reading Group, *February 2022.* Reviewer for NeurIPS (2023, 2022, 2021), ICML (2023, 2022), ICLR (2023), AISTATS (2023), AAAI (2023). Outstanding Reviewer Award at ICML 2022.

TECHNICAL STRENGTHS

DL FrameworksJax (Flax, Optax, Haiku, Numpyro, Blackjax), Tensorflow, PyTorch (Pyro), KerasComputer LanguagesPython, C++, VerilogMedical ImagingTOAST++, FSL, SPM, Freesurfer

^{*} denotes equal contribution