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Why Optimal Transport?

* The natural geometry for probability measures supported on a metric space
* Shortest path principle
* OT generalises this: one item -> groups of items
* Borrows key geometric properties of underlying “eround” space on which distributions are defined
* Euclidean metric -> interpolation, barycenters, etc -> Wasserstein space

* Provides a metric (or discrepancy measure) for probability measures with non-overlapping support
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In this talk

[. Mathematical Formulation of Optimal Transport Theory
Wasserstein Distances
Computational and Statistical Issues
[I. Approximate/Regularised OT
Sliced Wasserstein Distances
Sinkhorn Divergences
[lI. Applications of OT in Machine Learning
[V. Extensions of OT
Unbalanced OT

OT on separate metrics



Mathematical Preliminaries




Monge Problem

* [Monge, 1781] How does one move one pile of dirt to another while minimising effort?

* Probability measures i € P(Q), v € P(Q,), on metric spaces, and a cost function ¢ : QX Q — R

* Push-forward operator T# transfers measures from one space £, to another €2,

U(A) = u(T~'(A)), VBorel subsets A € (2. (conservation of mass)

* The Monge formulation wishes to find a mapping T : €2, — €2, that minimises

inf J c(x, T(xX))u(x)dx
IHu=v J o
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Monge Problem - Issues

inf J c(x, T(x))u(x)dx
IHu=v J o

S

* T#u = vis not a convex constraint, Existence and Unicity of T is not guaranteed

* Can’t split mass (one-to-one, but not one-to-many)

* Ex: Can’t map Dirac measures o, to continuous measures




Kantorovich Relaxation

* [Kantorovich, 1942] Relax the requirement of maps 7 to probabilistic couplingsy € SP(L2 X €2.)

yE€ P = yZO,J }’(Xa)’)dy=//t,[ y(X,y)dx = v
Q2 Q2
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Product Couplingy = 1 ® v Coupling for Dirac -> Dirac Coupling for Dirac -> Continuous

* Givenyu € P(Q), v € P(L,), on metric spaces, a cost function ¢ : Q X Q — R™, find couplings y
that minimise

argminl[ c(X,y)y(X,y)dxdy s.t.
Y 2 Xx€,

y € P = {}/ZO,J }’(X,Y)d)’:ﬂ,J y(X,y)dX=v}
Qt QS



Kantorovich Dual Formulation

* Instead of optimising over all couplings y that satisfy the constraints, consider two measurable
functions ¢ € L,(1), w € L,(v)

* Reminder: Afnf: 2 — % is Lipschitz continuous if there exists a real constant K > 0 s.t

doy(f(x1), f(x)) < Kdg(xy, x,)

Solve Igax { J¢dﬂ+JWdV st pX)+w(y) < c(x, Y)}
W

* The primal and dual formulations solve exactly the same problem at the equality

* support of y(X,y) is where ¢(X)+y(y) = c(X,y)

Joint distribution optimal y(x, y) Transport cost c(x, y) = |x — y|?

—— Source u(x)
—— Target v(y)
— v(x,y)

Image credit: Remi Flamary



Semi-dual formulation: c-Conjugates

* Instead of optimising over all possible ¢, i given constraints, can we find the best y given a ¢?

* Given a ¢, we need that i satishies for all X,y

P(x)+y(y) < c(X,y)
w(y) < c(X,y)—P(x)
w(y) < iI;f c(X,y)—P(x)

define “(y) = inf c(X, y)— p(X)

* Can simplify to a semi-dual formulation that depends on only one function ¢ through the c-conjugate

max { ngd,u+ Jt//dy s.t OX)+y(y) < c(X, y)} | :> max { ngdy+J ¢6d1/}
¢ ¢




Wasserstein Distances

* If c(x,y) = DP(x,y), a distance-metric, then for measures 1, v € P(£2), the p-Wasserstein Distance is

. W) = (inf HD@, yYy(dx. dy)) — E [Dexyy]

* In dual formulation

WD) = sup [t e where 0 +p() < DY(x)
pEL (1), weL (V)

* Special Case of semi-dual formulation - W, Distance

* Proposition:if c = |x — y|, then ¢ = —¢ for all ¢ that are 1-Lipschitz.

. Wi, v) = sup Jcb(d//t—dV)
¢ is 1-Lipschitz



Wasserstein Distances are natural metrics

* W-distances encode very different geometries from standard information divergences (KL, Euclidean)

* W-distances borrow key properties from the underlying distance metric and port them into the space
of probability distributions

* Euclidean distance -> interpolation, barycenters, etc

Wasserstein: Wi(a, 8) = sup {[ fda+ [gdB; f(z)+9(y) < |z —y|?}

Hellinger: H%(a,B8) = [(1/92 — 1/98)24y

Kullback-Leibler: KL(a|8) = [log(d5)d8  Burg: B(e|f) = KL(S|a) i E Geodesic in the Euclidean space
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Wasserstein Distances are natural metrics

* W-distances encode very different geometries from standard information divergences (KL, Euclidean)

* W-distances borrow key properties from the underlying distance metric and port them into the space
of probability distributions

* Euclidean distance -> interpolation, barycenters, convexity

o

%
%

* 44+

Wasserstein

°

d

arycenter




Wasserstein Distances are natural metrics

* W-distances encode very different geometries from standard information divergences (KL, Euclidean)

* W-distances borrow key properties from the underlying distance metric and port them into the space
of probability distributions

* Euclidean distance -> interpolation, barycenters, convexity

* What’s the catch?
* Quite expensive to calculate in practice
* Not differentiable generally

 Statistical properties don’t scale to high-D distributions



Example - OT for Discrete Distributions

° 17X

n m n m
Consider discrete measures j = Z A0y, U = Z bjéyj, where x;,y; € €2, and Z a =1, Z b =1
. : : .

! J

1
. Langrangian point clouds (¢, = —, b; = —), Eulerian Histograms (x;, y; are points on a grid)
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» Given a cost matrix C = ¢(x;, y;), the optimal coupling between measures is a linear program given

by

vo = argmin (C,y) . = Z v, iC; jwhere & = {y e (R |yl =a,yl = b}
yER i.j

* Alternative dual formulation is given by n + m variables and nm constraints

max a’a+p'b s.t.a; + p; < ¢
acR" peR™

j by



OT for Discrete Distributions - Issues

&
* Linear Program - no unique solution sometimes, numerical instabilities
* WJ(u,v) is not differentiable g

* Not parallelisable on GPU hardware P
* Solving a linear problem is O((n + m)nm log(n + m)) 4
* Assuming we have samples x, ..., x, ~ i, yy,...,y,, ~ v, what are the considerations involved when
. DeA A _ 1 B
computing Wi (i1, v,,), where /i, = . Z o U = Z
. Canwebound E | | W,(11,v) = W, (/1,,0,,) | | ?
. [Peyreetal.,15]1IfQ =R% d > 3thenE | |W (s V) — (,un, ) = O(n~1%)

* What machine learning applications would ideally like

* Faster, scalable, more stable, differentiable (ideally using autodift), better statistical convergence



Approximate/Regularised
OT




Sliced Wasserstein Distances

* For 1-D distributions 2 € R, the W, Distance is a function of the quantile functions F M Lx), F; L(x)

1

1 0.5}

1 p
Wp(ﬂ’y)zj C( F//t_l(x)—Fy_l(X) )dx

0

* For discrete distributions, very fast O(nlog n) algorithms exist

* Idea - Project the high-dimensional distributions into 1 dimension, and calculate 1-D W, distances

* [Bonneel et al. 2015, Kolouri et al. 2017] accomplish this using the Radon Transform

R, 0) = J 5t — xTOu(x)dx, teR, 0 S¥!
Sd-1




Sliced Wasserstein Distances

* [Bonneel et al. 2015] p-sliced Wasserstein distance

pSWE (u,v) = J WP (9@3 (1, 0), R (v, 9)) do
Sd-1

1
pSW? (p,v) = ). =W (99 (1, 6,), % (v,0)) ) O(Knlog n)
[

* [Nadjahi et al, 2020] sliced W-distances are true metrics, topologically equivalent and weaker to W,

 Statistical convergence ~ OK~2p=17%)

* [Kolouri et al, 2020] generalise this distance by formulating generalised Radon transforms onto
general hyper-surfaces

» Still not differentiable, in practise can reguite a.ver arge number of MC estimates if d is large

H(t,6,)

=T




Regularised Optimal Transport

* Idea - OT with Regularisation

* Option 1: Add priors to the family of couplings to consider

Add a regularisation term to the OT formulation, ;/(’} = argmin(y, C), + AR(y)
=

. [Cuturi, 2013] Entropic Regularisation, R(y) = Z v, (logy; i—1)
L]
[Courty et al., 2016] Group Lasso, R(y) = Z Z yfj
g LJES,

. Option 2: Relax the requirement for W, (1, v) = sup ng(d,u—dv)
¢ is 1-Lipschitz
* [Makkouva et al., 17] Use RELU Networks with bounded weights

* [Shirdhonkar’o8] - Use low-dimensional wavelet decompositions

Option 3: Change the cost function in argmin[ c(X,y)r(X, y)dxdy
y€EP  JQ xQ,

* [Solomon+, 17] Geodesic Distances on graphs simplify the Linear Program



Entropic Regularised OT

. We have yg = argmin(y, C), + 4 Z y; (logy; ,—1) = argmin(y, C)p — AH(y)

* [Wilson, ’69] Define a regularised Wasserstein distance, for 4 > 0

=

It A > 0, then the linear program becomes a A-strongly convex optimisation problem

Fast and scalable, differentiable - Sinkhorn’s Algorithm

* (O(nm) complexity in general, ~ O(nlogn) on gridded spaces with convolutions [Solomon et al., "15]

Better statistical convergence properties - Sinkhorn Divergences
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Sinkhorn’s Algorithm - A Fast and Scalable OT Solver

Proposition: If y; = argmin(y, C); — AH(y), then there exists u € R, v € R” such that
yeEP

vé = diag(u)K diag(v), where K = ¢~/

* Write down the Lagrangian to solve the convex optimisation problem

]
(')L/ayl-,j = Cl-,j+/llog viita; + ,B] = (
a; Ci,j ,Bj

yl,] —=clre A @41 = MlKl]V]




Sinkhorn’s Algorithm - A Fast and Scalable OT Solver

Proposition: If y; = argmin(y, C); — AH(y), then there exists u € R, v € R” such that
yeEP

vé = diag(u)K diag(v), where K = ¢~/

* To solve, first use the marginalisation constraints
diag(u)K diag(v)l, =a
{diag(V)K Idiag(u)l, = b
uOKv =a
{V ® K'u=b

* Fixed-point algorithm, repeat until convergence [Sinkhorn, '67]

u < a/Kv followedby v « b/K'u



Sinkhorn’s Algorithm - A Fast and Scalable OT Solver

* Fixed-point algorithm, repeat until convergence [Sinkhorn, '67]

u < a/Kv followedby v« b/K'u

* Define the iterative Wasserstein Distance

W,(u,v) = (y;,C), wherey, = diag(u,)Kdiag(v,)

','E]-, "a:n —>
—
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Sinkhorn /=1,...,L—1

ow, oW, ow, ow,
oX  o0a oY ob

can be computed recursively (and using autodiff)



Sinkhorn’s Algorithm - A Fast and Scalable OT Solver

» Computational complexity - O((n + m)?) X O(d?)

* Linear convergence for u, v -> Rate bounded by A

_ Computational Speed for Histograms of lterations Required to Obtain 1e-4 Relative
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Sinkhorn’s Algorithm as Bregman Projections

* Fixed-point algorithm, repeat until convergence [Sinkhorn, '67]

u < a/Kv followedby v < b/K'u

* [Benamou et al., 2015] show that solving entropic regularised OT is the same as Bregman projections

* Proposition: y(’} is the solution of the following Bregman projection

y(’} = argmin KL(y, K)

yEL
* Can be generalised to calculate Wasserstein barycenters
N N
min Z AW (1, v;) — Yy =1y ... Yyl = argmin Z AKL(y;, K)
b=l ek O



Sinkhorn Divergences

. Given the regularised Wasserstein Distance W,(y, v) = min(y, C) — AH(y)

=

* Issue: W,(u, 1) # 0

_ | |
. Fix [Ramdas et al., 2017] : W, (1, v) = W,(u,v) — EW/I(,M, 1) — EWA(U, V)

* Sinkhorn Divergences have some nice distance-based and interpolating properties

* When 4 — 0, we re-obtain OT

o Lim W(u,v) = Wh(u,v)
A—0

* When A — o0, we obtain kernel-based distances (Maximum Mean Discrepancy, Energy Distance)

_ | |
e lim W,(u,v) = E(u,v) — EE(//t,,u) — EE(U’ V), where E(11,v) = (ab’, C)
A— 00



Sinkhorn Divergences

* Assuming we have samples x;, ..., x, ~ 1, yy,...,y, ~ v, what are the considerations involved when
computing W/(/i,, U,,), where /2” = ; Z oo Vm = Z
Computational Costs Statistical Convergence
, 1 1
(n + m) MMD(p,v) = E(u,v) — EE(”’ 1) — EE(D’ 2 O(1/7/n)
A= o0
O - Wi, v) = W(u, v) Lw (1, 1) Lw (v, v) g :
V) = V) — — ) — =W, (v, v
((n+ m)°) ez AU 5 Walks 1) = =W, gd/z\/z

O((n + m)nm log nm) WP, v) 6 (1/n')



Applications in Machine
Learning




OT for Supervised Learning - Wasserstein Loss

» [Frogner et al 2015] Multiclass classification - learn optimal maps from & € R%to % = [Rff through
H =hy: XL —> Y
* 1,y € A (the K-d simplex), and C € R%* where C,. . = dP (k, k')

e Minimise the entropic regularised Wasserstein Distance Wl’}(h( - x), y(+))

* Ground-truth metric can encode semantic similarity

* Flickr Creative Commons 100M dataset : d” (k, k') = ||word2vec(k) — wordzvec(lc’)H%

* Example labels - travel, square, wedding, art, flower, music, nature, ...

0.64
0.62
S 0.60
< (.58 —e— Wasserstein AUC
0.56 Divergence AUC
0.54

0.0 0.5 1(.}/0 10 2.0 Eskimo dog

Image credit: [Frogner et al 2015] Image credit: [Frogner et al 2015]



OT for Generative Modelling - WGAN

* Let P, denote the real data distribution over a metric space €2 (i.e image space of [0,1]>w%3),
» Let Zbe a random variable over a space Z, g : Z X RY - Q a function parametrised by § € R?
* Let Py denote the distribution over gy(Z)

* [Arjovsky et al., 2017] trains generative models by minimising the W, distance b/w P, and P,

WlH(P,P,) = inf E, . _[|lx—
L (P, Py) o lx = yll]

* Using the semi-dual formulation, where fis a 1-Lipschitz function -

Wll (ﬂj’,,, [P’g) = Sup ‘xNumr[f (X)] — "xNP@[f (x)]
IAlL=1

* If instead we consider K-Lipschitz functions instead, we get

sup E,_p [f(0)] = E,p [f(0] < sup E, p [f(0)] — E,p [f0)] = K. W] (P, Py)
1Al <1 £l <K




OT for Generative Modelling - WGAN

. Therefore, for parametrised family of functions { f¢} that are all K-Lipschitz, solve instead
ped

W(P,.P,) = max B, [fcb(x)] ~Evpo Vo (89(2))_

* The paper proves that W (IP,,, IP’Q) is the W, distance unto a multiplicative factor, and further that

VoW (P, Py) = = E__ [Vef (89(Z)>:

* K-Lipschitz bound is roughly enforced by gradient clipping
¢ < clip(g, — c, c)




OT for Generative Modelling - Extensions

* [Guljarani et al., 2017] Improved WGAN - Replace weight clipping with constraint on gradient norm

_ _ 2
) W(ﬂj’,,, |]3>9) = max[E, f¢(x)_ — ) [f¢ (89(2))] + A =~ [(vagb(X)Hz — 1) ]

ped

* A differentiable function is 1-Lipschitz i.f.f it has gradients with norm at most 1 everywhere

Weight clipping
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OT for Generative Modelling - Sinkhorn Divergences

* [Genevay et al., 2017] Generative Models with Sinkhorn Divergences

|
Define P, = ~ Z oy the empirical data distribution, P, = g,(Z)
j=1

Generator is trained through min E,(6) = W,(P,P,) ~ 2W, (P, P,) — W,(P,,P) — W,(P,, P,)

0

Cost function in general is ¢, (x, y) = || Jo) — 1) ” wheref, : X — R’

oW, ow,
00 O

02

sl

1l

=
x - !

Generative model

can be obtained through autodiff
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Extensionsto OT



Unbalanced Optimal Transport

* (u(€2,) = v(£2)) no longer holds true?

* Modify the OT problem into a variational formulation - adding infinite sources/sinks, mass creation
* [Matthias et al 2016] Given two measures p € M_(€2), v € M, (£2),

* Choose 0 < m < min{u(€2), v(£2)}

. Define y, = J

y(X,y)dy, 7, = J ¥(X, y)dx and solve
Q,

§)

\)

min Jc(x, y)dy(x,y) subjecttoy, < u,y, < U, y(L2. X Q) =m
yeM (2, X Q,)

* Generalise the Wasserstein distance to this setting with the Wasserstein Fisher-Rao distance

Wiu,v)= min  KL(y, | p) + KL (y, | v) + ch(x’ y)dy(x, y)
}’EM+(QSXQt)

* [Peyre et al., 2017] General algorithm using entropic regularised WFR with Sinkhorn iterations



OT between different metric spaces

* Can you perform OT between two spaces without ¢(x, y) or when dim (QS) # dim (Qt) ?

* Extending OT metrics to measures with no common ground space

* [Memoli, 2011] proposed Gromov-Wasserstein distance

S, (//t, U

)

. —_ \) \)

A—
D;, =

min
}/E@(,u, 1/)

-

t ol
Xj Xl

Z(D; 1 D; ) X 7; X m)

P

, Z(D,;, D; ) is a dissimilarity metric b/w distances




OT between different metric spaces

* This is a Quadratic Program - Nonconvex, NP-hard
* [Peyre et al., 2016] proposed an entropic regularisation relaxation of this problem
GW,(u,v) = min ZLD,,D)xy,; Xy, |—AH(@)
yeP(u,v) ’

* This regularised term can be solved using projected gradient descent/Sinkhorn’s algorithm
v+ aremin <;/, ZL(D, ;. D) ® yk> — AH(y)
ykePp
. Where K'=Z(D,;;,D;) ® vX, the tensor product where & (D D) & yk = (3 (D D; l)yk,l) -
isj
* Sinkhorn’s algorithm returns a stationary point of the nonconvex optimisation problem




Conclusions

* Optimal Transport Theory provides a rigorous and rich mathematical formulation for defining
metrics/discrepancy measures between probability measures

* In practise, cheap and efficient approximations have been developed recently
* Applications in generative modelling, supervised learning, computer vision and graphics
* Other cool research to read about
* [Blanchet et al., 2021] Distributionally Robust Optimisation
* [Durmus et. Al, 2019] Convergence of Langevin Dynamics Monte Carlo in Wasserstein geometry

* [Kolouri et al., 2020] Optimal Transport on graphs and arbitrary manifolds through Wasserstein
embeddings

* [Courty et al., 2015] Domain Adaptation with Optimal Transport

* [Craig et al., 2017] Wasserstein Gradient Flows
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