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Why Optimal Transport?
• The natural geometry for probability measures supported on a metric space


• Shortest path principle 


• OT generalises this: one item -> groups of items


• Borrows key geometric properties of underlying “ground” space on which distributions are defined


• Euclidean metric -> interpolation, barycenters, etc -> Wasserstein space


• Provides a metric (or discrepancy measure) for probability measures with non-overlapping support

Image credit: Marco CuturiImage credit: [Kolouri et al. 2017]
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Mathematical Preliminaries



Monge Problem
• [Monge, 1781] How does one move one pile of dirt to another while minimising effort?


• Probability measures , , on metric spaces, and a cost function μ ∈ P(Ωs) ν ∈ P(Ωt) c : Ωs × Ωt → ℝ+

inf
T#μ=ν ∫Ωs

c(x, T(x))μ(x)dx

Ωs Ωt

μ(x)
ν(T(x))

T

• Push-forward operator  transfers measures from one space  to another T# Ωs Ωt

        (conservation of mass)ν(A) = μ(T−1(A)), ∀Borel subsets A ∈ Ωt

• The Monge formulation wishes to find a mapping  that minimisesT : Ωs → Ωt



Monge Problem - Issues

•  is not a convex constraint, Existence and Unicity of  is not guaranteed


• Can’t split mass (one-to-one, but not one-to-many)


• Ex: Can’t map Dirac measures   to continuous measures

T#μ = ν T

δx

inf
T#μ=ν ∫Ωs

c(x, T(x))μ(x)dx

Ωs Ωt

δ(x) ν(T(x))

T



Kantorovich Relaxation
• [Kantorovich, 1942] Relax the requirement of maps  to probabilistic couplings T γ ∈ 𝒫(Ωs × Ωt)

γ ∈ 𝒫 = {γ ≥ 0, ∫Ωt

γ(x, y)dy = μ, ∫Ωs

γ(x, y)dx = ν}

• Given , , on metric spaces, a cost function , find couplings  
that minimise

μ ∈ P(Ωs) ν ∈ P(Ωt) c : Ωs × Ωt → ℝ+ γ

     s.t.   argmin
γ ∫Ωs×Ωt

c(x, y)γ(x, y)dxdy

γ ∈ 𝒫 = {γ ≥ 0, ∫Ωt

γ(x, y)dy = μ, ∫Ωs

γ(x, y)dx = ν}

s.t Product Coupling γ = μ ⊗ ν
Image credit: Lenaıc Chizat

Coupling for Dirac -> Dirac
Image credit: Remi Flamary

Coupling for Dirac -> Continuous
Image credit: Remi Flamary



Kantorovich Dual Formulation
• Instead of optimising over all couplings  that satisfy the constraints, consider two measurable 

functions , 
γ

ϕ ∈ L1(μ) ψ ∈ L1(ν)

• Reminder: A fn  is Lipschitz continuous if there exists a real constant  s.t
f : 𝒳 → 𝒴 K ≥ 0

d𝒴( f(x1), f(x2)) ≤ Kd𝒳(x1, x2)

Solve             max
ϕ,ψ {∫ ϕdμ+∫ ψdν  s.t  ϕ(x)+ψ(y) ≤ c(x, y)}

μ(x)

ν(y)μ(x)
ν(y)

Image credit: Remi Flamary

• The primal and dual formulations solve exactly the same problem at the equality


• support of  is where γ(x, y) ϕ(x)+ψ(y) = c(x, y)



Semi-dual formulation: c-Conjugates
• Instead of optimising over all possible ,  given constraints, can we find the best  given a ?


• Given a , we need that  satisfies for all 





                  





        define 

ϕ ψ ψ ϕ

ϕ ψ x, y

ϕ(x)+ψ(y) ≤ c(x, y)

ψ(y) ≤ c(x, y)−ϕ(x)

ψ(y) ≤ inf
x

c(x, y)−ϕ(x)

ϕc(y) = inf
x

c(x, y)−ϕ(x)

• Can simplify to a semi-dual formulation that depends on only one function  through the c-conjugateϕ

max
ϕ,ψ {∫ ϕdμ+∫ ψdν  s.t  ϕ(x)+ψ(y) ≤ c(x, y)} max

ϕ {∫ ϕdμ+∫ ϕcdν}



• If , a distance-metric, then for measures , the p-Wasserstein Distance is


• 


• In dual formulation


• , where 


• Special Case of semi-dual formulation -  Distance


• Proposition: if , then  for all  that are 1-Lipschitz.


•

c(x, y) = Dp(x, y) μ, ν ∈ P(Ω)

Wp
p(μ, ν) = ( inf

γ∈𝒫 ∬ D(x, y)pγ(dx, dy)) = 𝔼
(x,y)∼γ

[D(x, y)p]

Wp
p(μ, ν) = sup

ϕ∈L1(μ),ψ∈L1(ν) ∫ ϕdμ+∫ ψdν ϕ(x)+ψ(y) ≤ Dp(x, y)

W1

c = |x − y | ϕc = −ϕ ϕ

W1(μ, ν) = sup
ϕ is 1-Lipschitz ∫ ϕ(dμ−dν)

Wasserstein Distances



Wasserstein Distances are natural metrics
• W-distances encode very different geometries from standard information divergences (KL, Euclidean)


•  W-distances borrow key properties from the underlying distance metric and port them into the space 
of probability distributions


• Euclidean distance -> interpolation, barycenters, etc

Image credit: Gabriel Peyre
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Wasserstein Distances are natural metrics
• W-distances encode very different geometries from standard information divergences (KL, Euclidean)


•  W-distances borrow key properties from the underlying distance metric and port them into the space 
of probability distributions


• Euclidean distance -> interpolation, barycenters, convexity
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Wasserstein Distances are natural metrics
• W-distances encode very different geometries from standard information divergences (KL, Euclidean)


•  W-distances borrow key properties from the underlying distance metric and port them into the space 
of probability distributions


• Euclidean distance -> interpolation, barycenters, convexity

• What’s the catch?


• Quite expensive to calculate in practice


• Not differentiable generally


• Statistical properties don’t scale to high-D distributions



Example - OT for Discrete Distributions

• Consider discrete measures , , where ,  and 


• Langrangian point clouds ( ), Eulerian Histograms (  are points on a grid)

μ =
n

∑
i

aiδxi
ν =

m

∑
i

bjδyj
xi, yj ∈ Ω

n

∑
i

ai = 1,
m

∑
j

bj = 1

ai =
1
n

, bj =
1
m

xi, yj

• Given a cost matrix , the optimal coupling between measures is a linear program given 
by


 where 


• Alternative dual formulation is given by  variables and  constraints


          s.t.  

C = c(xi, yj)

γ0 = argmin
γ∈𝒫

⟨C, γ⟩F = ∑
i,j

γi,jci,j 𝒫 = {γ ∈ (ℝ+)n×m |γ1n = a, γ1m = b}

n + m nm

max
α∈ℝn,β∈ℝm

αTa+βTb αi + βj ≤ ci,j ∀i, j

μ

ν

Image credit: Remi Flamary

μ

ν

Image credit: Remi Flamary



OT for Discrete Distributions - Issues
• Linear Program - no unique solution sometimes, numerical instabilities


•  is not differentiable


• Not parallelisable on GPU hardware


• Solving a linear problem is 


• Assuming we have samples , , what are the considerations involved when 
computing , where , ? 


• Can we bound  ?


• [Peyre et al., 15] If ,  then 


• What machine learning applications would ideally like


• Faster, scalable, more stable, differentiable (ideally using autodiff ), better statistical convergence

Wp
p(μ, ν)

𝒪((n + m)nm log(n + m))

x1, …, xn ∼ μ y1, …, ym ∼ ν
Wp

p( ̂μn, ̂νm) ̂μn =
1
n ∑

i

δxi
ν̂m =

1
m ∑

j

δyj

𝔼 [ Wp(μ, ν) − Wp ( ̂μn, ̂νm) ]
Ω = ℝd d > 3 𝔼 [ Wp(μ, ν) − Wp ( ̂μn, ̂νm) ] = 𝒪(n−1/d)

𝒫

Image credit: Remi Flamary



Approximate/Regularised 
OT



Sliced Wasserstein Distances
• For 1-D distributions , the  Distance is a function of the quantile functions 
Ω ∈ ℝ Wp F−1

μ (x), F−1
ν (x)

Wp(μ, ν) = ∫
1

0
c ( F−1

μ (x) − F−1
ν (x)

p) dx

Image credit:Marco Cuturi

W1(μ, ν)

• For discrete distributions, very fast  algorithms exist


• Idea -  Project the high-dimensional distributions into 1 dimension, and calculate 1-D  distances


• [Bonneel et al. 2015, Kolouri et al. 2017] accomplish this using the Radon Transform


𝒪(n log n)

Wp

ℛ(μ, θ) = ∫𝕊d−1

δ(t − xTθ)μ(x)dx, t ∈ ℝ, θ ∈ 𝕊d−1

Image credit: [Kolouri et al 2017]



Sliced Wasserstein Distances
• [Bonneel et al. 2015] p-sliced Wasserstein distance





,         


• [Nadjahi et al, 2020] sliced W-distances are true metrics, topologically equivalent and weaker to 


• Statistical convergence 


• [Kolouri et al, 2020] generalise this distance by formulating generalised Radon transforms onto 
general hyper-surfaces

pSWp
p (μ, ν) = ∫𝕊d−1

Wp
p (ℛ (μ, θ), ℛ (ν, θ)) dθ

pSWp
p,K (μ, ν) = ∑

l

1
K

Wp
p (ℛ (μ, θl), ℛ (ν, θl)) 𝒪(Kn log n)

Wp

∼ 𝒪(K−1/2n−1/2)

• Still not differentiable, in practise can require a very large number of MC estimates if d is large



• Idea - OT with Regularisation

• Option 1: Add priors to the family of couplings to consider


• Add a regularisation term to the OT formulation,   


• [Cuturi, 2013] Entropic Regularisation, 


• [Courty et al., 2016] Group Lasso, 


• Option 2: Relax the requirement for 


• [Makkouva et al., 17] Use RELU Networks with bounded weights

• [Shirdhonkar’08] - Use low-dimensional wavelet decompositions


• Option 3: Change the cost function in 


• [Solomon+, ’17] Geodesic Distances on graphs simplify the Linear Program

γλ
0 = argmin

γ∈𝒫
⟨γ, C⟩F + λR(γ)

R(γ) = ∑
i,j

γi,j(log γi,j−1)

R(γ) = ∑
g

∑
i,j∈𝒢g

γ2
i,j

W1(μ, ν) = sup
ϕ is 1-Lipschitz ∫ ϕ(dμ−dν)

argmin
γ∈𝒫 ∫Ωs×Ωt

c(x, y)γ(x, y)dxdy

Regularised Optimal Transport



Entropic Regularised OT
• We have    


• [Wilson, ’69] Define a regularised Wasserstein distance, for 


γλ
0 = argmin

γ∈𝒫
⟨γ, C⟩F + λ∑

i,j

γi,j(log γi,j−1) = argmin
γ∈𝒫

⟨γ, C⟩F − λℍ(γ)

λ ≥ 0

Wλ(μ, ν) = min
γ∈𝒫

⟨γ, C⟩F − λℍ(γ)

• If , then the linear program becomes a -strongly convex optimisation problem


• Fast and scalable, differentiable - Sinkhorn’s Algorithm


•  complexity in general,  on gridded spaces with convolutions [Solomon et al., ’15]


• Better statistical convergence properties - Sinkhorn Divergences

λ ≥ 0 λ

𝒪(nm) ≃ 𝒪(n log n)

γλ
0

λ
Image credit: Remi Flamary



Sinkhorn’s Algorithm - A Fast and Scalable OT Solver

• Proposition: If , then there exists  such thatγλ
0 = argmin

γ∈𝒫
⟨γ, C⟩F − λℍ(γ) u ∈ ℝn

+, v ∈ ℝm
+

, where γλ
0 = diag(u)K diag(v) K = e−C/λ

• Write down the Lagrangian to solve the convex optimisation problem





   


             

L(γ, α, β) = ∑
ij

γi,jCi,j+λγi,j (log γi,j−1) + αT(γ1−a) + βT (γT1−b)
∂L/∂γi,j = Ci,j+λ log γi,j+αi + βj ⇒ 0

γi,j = e
αi
β e−

Ci,j
λ e

βj
λ = uiKijvj

Ref:  Cuturi, M. (2013). Sinkhorn distances: Lightspeed computation of optimal transport. Advances in neural information processing systems, 26.



Sinkhorn’s Algorithm - A Fast and Scalable OT Solver

• Proposition: If , then there exists  such thatγλ
0 = argmin

γ∈𝒫
⟨γ, C⟩F − λℍ(γ) u ∈ ℝn

+, v ∈ ℝm
+

, where γλ
0 = diag(u)K diag(v) K = e−C/λ

• To solve, first use the marginalisation constraints





        

{
diag(u)K diag(v)1m = a
diag(v)KT diag(u)1n = b

{u ⊙ Kv = a
v ⊙ KTu = b

• Fixed-point algorithm, repeat until convergence [Sinkhorn, ’67]


    followed by     u ← a/Kv v ← b/KTu



Sinkhorn’s Algorithm - A Fast and Scalable OT Solver
• Fixed-point algorithm, repeat until convergence [Sinkhorn, ’67]


    followed by     

• Define the iterative Wasserstein Distance


,    where 

u ← a/Kv v ← b/KTu

WL(μ, ν) = ⟨γL, C⟩ γL = diag(uL)K diag(vL)

•  can be computed recursively (and using autodiff )
∂WL

∂X
,

∂WL

∂a
,

∂WL

∂Y
,

∂WL

∂b

C
C

Image credit: Marco Cuturi



Sinkhorn’s Algorithm - A Fast and Scalable OT Solver

• Computational complexity - 


• Linear convergence for  -> Rate bounded by 

𝒪((n + m)2) × 𝒪(d2)

u, v λ

Image credit: [Cuturi et al., 2013] Image credit: [Cuturi et al., 2013]



Sinkhorn’s Algorithm as Bregman Projections
• Fixed-point algorithm, repeat until convergence [Sinkhorn, ’67]


    followed by     

• [Benamou et al., 2015] show that solving entropic regularised OT is the same as Bregman projections                   

u ← a/Kv v ← b/KTu

• Proposition:  is the solution of the following Bregman projection
γλ
0

γλ
0 = argmin

γ∈𝒫
KL(γ, K)

K γ

Image credit: Marco 

• Can be generalised to calculate Wasserstein barycenters


                                         min
μ

N

∑
i=1

λiWλ(μ, νi) → γ = [γ1, …, γN] = argmin
γ∈𝒫K

i

N

∑
i

λiKL(γi, K)



Sinkhorn Divergences
• Given the regularised Wasserstein Distance 


• Issue: 


• Fix [Ramdas et al., 2017] : 


• Sinkhorn Divergences have some nice distance-based and interpolating properties


• When , we re-obtain OT


• 


• When , we obtain kernel-based distances (Maximum Mean Discrepancy, Energy Distance)


• ,   where 

Wλ(μ, ν) = min
γ∈𝒫

⟨γ, C⟩F − λℍ(γ)

Wλ(μ, μ) ≠ 0

Wλ(μ, ν) = Wλ(μ, ν) −
1
2

Wλ(μ, μ) −
1
2

Wλ(ν, ν)

λ → 0

lim
λ→0

Wλ(μ, ν) = Wp
p(μ, ν)

λ → ∞

lim
λ→∞

Wλ(μ, ν) = E(μ, ν) −
1
2

E(μ, μ) −
1
2

E(ν, ν) E(μ, ν) = ⟨abT, C⟩



Sinkhorn Divergences
• Assuming we have samples , , what are the considerations involved when 

computing , where , ? 
x1, …, xn ∼ μ y1, …, ym ∼ ν

Wp
p( ̂μn, ̂νm) ̂μn =

1
n ∑

i

δxi
ν̂m =

1
m ∑

j

δyj

MMD(μ, ν) = E(μ, ν) −
1
2

E(μ, μ) −
1
2

E(ν, ν)

Wλ(μ, ν) = Wλ(μ, ν) −
1
2

Wλ(μ, μ) −
1
2

Wλ(ν, ν)

Wp
p(μ, ν)

λ → ∞

λ → 0

Computational Costs Statistical Convergence

(n + m)2

𝒪((n + m)2)

𝒪((n + m)nm log nm)

𝒪(1/ n)

𝒪 ( 1

λd/2 n )

𝒪 (1/n1/d)
Ref: Gretton, Arthur, et al. "A kernel two-sample test." The Journal of Machine Learning Research 13.1 (2012): 723-773, 



Applications in Machine 
Learning



OT for Supervised Learning - Wasserstein Loss
• [Frogner et al 2015] Multiclass classification - learn optimal maps from  to  through 




•  (the K-d simplex), and  where  


• Minimise the entropic regularised Wasserstein Distance 


• Ground-truth metric can encode semantic similarity


• Flickr Creative Commons 100M dataset : 


• Example labels - travel, square, wedding, art, flower, music, nature, …

𝒳 ∈ ℝd 𝒴 = ℝK
+

ℋ = hθ : 𝒳 → 𝒴

hθ, y ∈ Δk C ∈ ℝK,K
+ Cκ,κ′￼

= dp (κ, κ′￼)

Wλ
p(h( ⋅ ∣ x), y( ⋅ ))

dp (κ, κ′￼) = ∥word2vec(κ) − word2vec(κ′￼)∥2
2

Image credit: [Frogner et al 2015] Image credit: [Frogner et al 2015]



OT for Generative Modelling - WGAN
• Let  denote the real data distribution over a metric space  (i.e image space of ), 


• Let  be a random variable over a space ,   a function parametrised by 


• Let  denote the distribution over 


• [Arjovsky et al., 2017] trains generative models by minimising the  distance b/w  and 





• Using the semi-dual formulation, where  is a 1-Lipschitz function - 





• If instead we consider K-Lipschitz functions instead, we get 

ℙr Ω [0,1]h×w×3

Z 𝒵 g : 𝒵 × ℝd → Ω θ ∈ ℝd

ℙθ gθ(Z)

W1 ℙr ℙθ

W1
1 (ℙr, ℙθ) = inf

γ∈𝒫(ℙr, ℙθ)
𝔼(x,y)∼γ[∥x − y∥]

f

W1
1 (ℙr, ℙθ) = sup

∥f∥L≤1
𝔼x∼ℙr

[ f(x)] − 𝔼x∼ℙθ
[ f(x)]

sup
∥f∥L≤1

𝔼x∼ℙr
[ f(x)] − 𝔼x∼ℙθ

[ f(x)] ≤ sup
∥f∥L≤K

𝔼x∼ℙr
[ f(x)] − 𝔼x∼ℙθ

[ f(x)] = K . W1
1 (ℙr, ℙθ)



OT for Generative Modelling - WGAN
• Therefore, for parametrised family of functions  that are all K-Lipschitz, solve instead





• The paper proves that  is the  distance unto a multiplicative factor, and further that





• K-Lipschitz bound is roughly enforced by gradient clipping


{fϕ}ϕ∈Φ

W (ℙr, ℙθ) = max
ϕ∈Φ

𝔼x∼ℙr [fϕ(x)] − 𝔼z∼p(z) [fϕ (gθ(z))]
W (ℙr, ℙθ) W1

∇θW (ℙr, ℙθ) = − 𝔼z∼p(z) [∇θ f (gθ(z))]

ϕ ← clip(ϕ, − c, c)



OT for Generative Modelling - Extensions
• [Guljarani et al., 2017] Improved WGAN - Replace weight clipping with constraint on gradient norm


• 


• A differentiable function is 1-Lipschitz i.f.f it has gradients with norm at most 1 everywhere

W (ℙr, ℙθ) = max
ϕ∈Φ

𝔼x∼ℙr [fϕ(x)] − 𝔼z∼p(z) [fϕ (gθ(z))] + λ𝔼x∼ℙr [(∥∇fϕ(x)∥2 − 1)
2]

Image credit:[Guljarani et al 2017]

Image credit:[Guljarani et al 2017]



OT for Generative Modelling - Sinkhorn Divergences
• [Genevay et al., 2017] Generative Models with Sinkhorn Divergences


• Define  the empirical data distribution, 


• Generator is trained through 


• Cost function in general is where 


•  can be obtained through autodif

ℙr =
1
N

N

∑
j=1

δyj
ℙθ = gθ(Z)

min
θ

̂EL(θ) = Wλ(ℙr, ℙθ) ≃ 2WL(ℙr, ℙθ) − WL(ℙr, ℙr) − WL(ℙθ, ℙθ)

cϕ(x, y) = fϕ(x) − fϕ(y) fϕ : 𝒳 → ℝp

∂WL

∂θ
,

∂WL

∂ϕ

Image credit:[Genevay et al 2017]



Extensions to OT



Unbalanced Optimal Transport
• ( ) no longer holds true?


• Modify the OT problem into a variational formulation - adding infinite sources/sinks, mass creation


• [Matthias et al 2016] Given two measures , ,


• Choose 


• Define ,  and solve


    subject to , 


• Generalise the Wasserstein distance to this setting with the Wasserstein Fisher-Rao distance





• [Peyre et al., 2017] General algorithm using entropic regularised WFR with Sinkhorn iterations

μ(Ωs) = ν(Ωt)

μ ∈ M+(Ωs) ν ∈ M+(Ωt)

0 < m ≤ min{μ(Ωs), ν(Ωt)}

γt = ∫Ωt

γ(x, y)dy γs = ∫Ωs

γ(x, y)dx

min
γ∈ℳ+(Ωs × Ωt) ∫ c(x, y)dγ(x, y) γt ≤ μ, γs ≤ ν γ(Ωs × Ωt) = m

̂W 2
2(μ, ν) = min

γ∈M+(Ωs×Ωt)
KL (γt ∣ μ) + KL (γs ∣ ν) + ∫ cℓ(x, y)dγ(x, y)



OT between different metric spaces
• Can you perform OT between two spaces without  or when ?


• Extending OT metrics to measures with no common ground space


• [Memoli, 2011] proposed Gromov-Wasserstein distance





with , ,  is a dissimilarity metric b/w distances

c(x, y) dim (Ωs) ≠ dim (Ωt)

𝒢𝒲p (μ, ν) = ( min
γ∈𝒫(μ, ν)

ℒ(Di,k, D′￼j,l) × γi,j × γk,l)
1
p

Di,k = xs
i − xs

k D′￼j,l = xt
j − xt

l ℒ(Di,k, D′￼j,l)

Di,k D′￼j,l

ℒ(Di,k, D′￼

Image credit: Remi Flamary

ν

Image credit: Remi Flamary



OT between different metric spaces
• This is a Quadratic Program - Nonconvex, NP-hard


• [Peyre et al., 2016] proposed an entropic regularisation relaxation of this problem





• This regularised term can be solved using projected gradient descent/Sinkhorn’s algorithm





• Where , the tensor product where 


• Sinkhorn’s algorithm returns a stationary point of the nonconvex optimisation problem


𝒢𝒲λ (μ, ν) = ( min
γ∈𝒫(μ, ν)

ℒ(Di,k, D′￼j,l) × γi,j × γk,l) − λℍ(γ)

γk+1 ← argmin
γk∈𝒫

⟨γ, ℒ(Di,k, D′￼j,l) ⊗ γk⟩ − λH(γ)

K′￼ = ℒ(Di,k, D′￼j,l) ⊗ γk ℒ(Di,k, D′￼j,l) ⊗ γk = (ℒ(Di,k, D′￼j,l)γk,l)i,j

Image credit: [Peyre et al 2016]



Conclusions
• Optimal Transport Theory provides a rigorous and rich mathematical formulation for defining 

metrics/discrepancy measures between probability measures


• In practise, cheap and efficient approximations have been developed recently


• Applications in generative modelling, supervised learning, computer vision and graphics


• Other cool research to read about


• [Blanchet et al., 2021] Distributionally Robust Optimisation


• [Durmus et. Al, 2019] Convergence of Langevin Dynamics Monte Carlo in Wasserstein geometry


• [Kolouri et al., 2020] Optimal Transport on graphs and arbitrary manifolds through Wasserstein 
embeddings


• [Courty et al., 2015] Domain Adaptation with Optimal Transport


• [Craig et al., 2017] Wasserstein Gradient Flows
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